《人工智能算法基础唐宇迪等著中国人工智能学》[64M]百度网盘|pdf下载|亲测有效
《人工智能算法基础唐宇迪等著中国人工智能学》[64M]百度网盘|pdf下载|亲测有效

人工智能算法基础唐宇迪等著中国人工智能学 pdf下载

出版社 立达书店图书专营店
出版年 2025
页数 390页
装帧 精装
评分 8.7(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供人工智能算法基础唐宇迪等著中国人工智能学电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

人工智能算法基础 唐宇迪等著 中国人工智能学 

全书通过116个典型范例+86个AI经典算法+40道经典习题+42道面试真题+42个高手点拨+4套算法职位招聘真题+19个项目,用算法解析人工智能


人工智能算法基础
  • 丛书名:无
  • 著译者:唐宇迪等
  • 出版日期:202203  版次:1  开本:16开
  • 一级分类:参考
  • 二级分类:一般图书
  • 三级分类:C22普及读物
  • 条码:9787301329184
【内容提要】 当前AI图书市场,理论知识与实践经验的脱节,是很多书籍的缺点。本书立足于理论,从实例入手,将理论知识和实际应用结合,目标是让读者能够快速地熟悉人工智能中经典算法。全书分为4篇,共20章。其中第1篇为基础算法篇,主要讲述排序、查找、线性结构、树、队列、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,主要讲述分类算法、回归算法、聚类算法、降维算法和集成算法;第3篇为强化学习算法篇,主要讲述基于价值的强化学习算法和基于策略的强化学习算法;第4  篇为深度学习算法篇,主要讲述神经网络模型算法、循环神经网络算法和卷积神经网络算法等内容。
本书适合从事数据科学与人工智能相关行业的读者阅读。
【图书目录】 第0章    人工智能与算法1
0.1 人工智能发展的水平 2
0.2 人工智能技术总览 3
0.3 算法在人工智能技术中的地位 9
0.4 学好算法能有哪些竞争优势 10
    第1章    排序算法12
1.1 冒泡排序(Bubble  Sort) 13
1.2 直接插入排序(Insert  Sort) 20
1.3 直接选择排序(Select  Sort) 24
1.4 升级版冒泡排序——快速排序(Quick  Sort) 26
1.5 升级版插入排序——希尔排序(Shell  Sort) 29
1.6 升级版选择排序——堆排序(Heap  Sort) 31
1.7 归并排序(Merge  Sort) 34
1.8 基数排序(Radix  Sort) 36
1.9 应用:应该使用哪种排序算法 40
1.10 高手点拨 42
1.11 编程练习 42
1.12 面试真题 42
第2章    查找算法43
2.1 线性查找(Line  Search)——傻瓜式查找 44
2.2 二分查找(Binary  Search)——排除另一半 44
2.3 插值查找(Insert  Search)——预判位置 45
2.4 斐波那契查找(Fibonacci  Search)——黄金分割法 46
2.5 树结构查找(Tree  Search) 48
2.6 散列查找(Hash  Search) 48
2.7 应用:自实现indexOf函数 49
2.8 高手点拨 49
2.9 编程练习 50
2.10 面试真题 50
    第3章    字符串算法51
3.1 朴素算法 52
3.2 KMP算法 53
3.3 Boyer-Moore算法 55
3.4 Rabin-Karp算法 59
3.5 Trie树 59
3.6 应用:AC自动机算法 60
3.7 高手点拨 64
3.8 编程练习 65
3.9 面试真题 65
    第4章    线性结构66
4.1 链表 67
4.2 栈 72
4.3 队列 73
4.4 应用:逆波兰计算器 74
4.5 高手点拨 81
4.6 编程练习 82
4.7 面试真题 82
    第5章    树结构83
5.1 树结构概述 84
5.2 二叉树  84
5.3 线索二叉树 90
5.4 二叉查找树 92
5.5 K近邻算法与k-d树 111
5.6 赫夫曼树 119
5.7 多路查找树 134
5.7.1   2-3树 134
5.7.2 B树 140
5.7.3 B+树 140
5.8 高手点拨 141
5.9 编程练习 141
5.10 面试真题 142
    第6章    堆结构143
6.1 二叉堆 144
6.2 d-堆 144
6.3 二项堆 145
6.4 斐波那契堆 148
6.5 左式堆 150
6.6 斜堆 152
6.7 应用:优先队列 152
6.8 高手点拨 153
6.9 编程练习 153
6.10 面试真题 153
    第7章    散列结构154
7.1 散列概述 155
7.2 散列函数的设计 156
7.3 解决冲突 157
7.4 完美散列 160
7.5 应用 161
7.6 高手点拨 162
7.7 编程练习 162
7.8 面试真题 162
    第8章    图结构163
8.1 图结构概述 164
8.2 图的存储 167
8.3 图的搜索 170
8.4 拓扑排序 173
8.5 应用:修路问题 175
8.6 高手点拨 178
8.7 编程练习 179
8.8 面试真题 179
    第9章    递归算法180
9.1 递归的概述 181
9.2 应用:汉诺塔问题 183
9.3 高手点拨 185
9.4 编程练习 185
9.5 面试真题 185
    第10章    分类算法186
10.1 分类算法概述 187
10.2 决策树 192
10.3 支持向量机 207
10.4 朴素贝叶斯算法 223
10.5 综合案例——基于SVM算法的癌症预测 231
10.6 高手点拨 235
10.7 编程练习 236
10.8 面试真题 236
    第11章    回归算法237
11.1 回归算法概述 238
11.2 线性回归算法 238
11.3 逻辑回归算法 251
11.4 综合案例——信用卡欺诈检测 259
11.5 高手点拨 264
11.6 编程练习 266
11.7 面试真题 267
    第12章    聚类算法268
12.1 聚类算法概述 269
12.2 K-means算法 270
12.3 K-means算法实践 276
12.4 DBSCAN算法 284
12.5 综合案例——图像分割 290
12.6 高手点拨 292
12.7 编程练习 293
12.8 面试真题 294
    第13章    降维算法295
13.1 降维算法概述 296
13.2 主成分分析 296
13.3 线性判别分析 306
13.4 综合案例——基于PCA和逻辑回归算法对鸢尾花数据集分类 313
13.5 高手点拨 315
13.6 编程练习 316
13.7 面试真题 317
    第14章    集成学习算法318
14.1 集成学习概述 319
14.2 Bagging算法 319
14.3 Boosting算法 321
14.4 XGBoost算法 322
14.5 综合案例——基于XGBoost算法的客户流失预测 335
14.6 高手点拨 346
14.7 编程练习 346
14.8 面试真题 347
    第15章    基于价值的强化学习(Value-Based  RL)算法348
15.1 强化学习 349
15.2 Q-Learning算法 351
15.3 DQN(Deep  Q-Learning)算法 356
15.4 综合案例——让AI自主探索迷宫 363
15.5 高手点拨 366
15.6 编程练习 366
15.7 面试真题 366
    第16章    基于策略的强化学习(Policy-Based  RL)算法367
16.1 策略梯度(Policy  Gradient)算法 368
16.2 Actor-Critic算法 377
16.3 综合案例——超级马里奥的实现 386
16.4 高手点拨 389
16.5 编程练习 389
16.6 面试真题 389
    第17章    神经网络模型算法390
17.1 神经网络概述 391
17.2 神经元模型和神经网络模型 392
17.3 BP神经网络算法 39
17.4 综合案例——使用神经网络进行回归预测 403
17.5 高手点拨 407
17.6 编程练习 407
17.7 面试真题 408

^_^:c272341e78164b8a9222ca6f34f47ec5