《Python医学数据分析入门》[93M]百度网盘|pdf下载|亲测有效
《Python医学数据分析入门》[93M]百度网盘|pdf下载|亲测有效

Python医学数据分析入门 pdf下载

出版社 人民邮电出版社京东自营官方旗舰店
出版年 2022-01
页数 390页
装帧 精装
评分 8.8(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供Python医学数据分析入门电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

产品特色

编辑推荐

1.结合医学数据,系统地介绍如何利用 Python 进行数据分析,以帮助读者解决数据分析中的实际问题。
2.本着让非专业读者易于理解的原则,本书强调实战和应用,着重介绍数据分析的思路和方法,尽量淡化分析方法的推导和计算。
3.书中配有大量的案例解析和程序示例,以及使用 Python 绘制的图形,所有代码均在 Python 3.8.5 环境下运行通过。
4.书中每一章都配有习题,书末附有习题参考答案,方便读者自学和学校老师教学。
5.提供源码下载

内容简介

数据分析是当今大数据时代最关键的技术,其广泛应用于包括医学在内的各个领域。Python 语言简单易用, 第三方库功能强大,提供了完整的数据分析框架,深受广大数据分析人员的青睐。
本书涵盖传统的统计分析方法和较为复杂的机器学习算法,结合大量精选的实例,使用 Python 进行数据分析,对常用分析方法进行深入浅出的介绍,以帮助读者解决数据分析中的实际问题。
本书强调实战和应用,尽量淡化分析方法的推导和计算过程,大量的 Python 程序示例是本书的亮点。阅读本书,读者不仅能掌握使用 Python 及相关库快速解决实际问题的方法,还能更深入地理解数据分析。
本书不仅适合临床医学、公共卫生及其他医学相关专业的本科生和研究生使用,亦可作为其他专业的学生和科研人员学习数据分析的参考书。

作者简介

赵军,流行病学博士,湖北医药学院副教授,预防医学系主任。主要研究方向为流行病学与健康大数据分析。有16年统计学与数据科学的教学和科研工作经验,精通Python语言、R语言,为国内多家三甲医院提供数据分析咨询与服务。编写教材两部,发表SCI论文十余篇,担任多个SCI杂志的审稿人。编写的《R语言医学数据分析实战》一书广获好评。

刘文婷,副教授,硕士生导师,现任湖北医药学院智能医学工程系主任、大数据中心主任。主持省自然科学基金1项。科研方向为人工智能和生物信息学。主讲课程有“智能医学工程导论”“医学生物信息学”等。发表SCI论文17篇、国际会议论文4篇。

精彩书评

本书内容通俗易懂,将理论与实践密切结合,书中的案例能够让读者体会到:虽然此前R在生物、医药方面有很多现成的库得到广泛应用,但随着Python库的不断完善,其速度和通用性快速提升,Python正在成为新的主流统计分析工具。体验过Python完整的数据分析框架的用户更会对Python青睐有加。未来,不同软件各自的优势将会更加分明,开源软件在医学领域的应用也会更加深入,前景更加光明。
—— 孙凤,北京大学公共卫生学院循证医学中心副主任

统计分析离不开统计软件。国内运用Python进行医学统计分析的图书不多见,本书正好填补了这个空白。
—— 石武祥,桂林医学院教授、博士生导师

Python近几年在医学中的应用已越来越多,但由于医学统计学专业性较强,如何将Python的优点与医学统计学的特点结合,目前很多人都在探索中。本书作为Python应用于医学数据分析领域的入门书,介绍了常用的医学统计分析方法及Python实现,是初学者不错的参考书。
—— 冯国双,首都医科大学附属北京儿童医院

Python是目前支撑人工智能医学数据分析的重要语言之一。赵军博士和刘文婷博士合著的这本书为深入开展医学数据分析提供了重要的参考。本书不仅深入浅出介绍了Python的基本概念,还直接提供了医学数据分析的实例,可以为相关的从业者和学生提供帮助。相信本书的出版会提高读者对Python在医学数据分析领域的认识,促进Python在医学数据分析领域的应用。
—— 白相志,北京航空航天大学教授

和鲸社区在数据科学普及的过程中,发现了一个显著的趋势:从临床研究到公共卫生行业,到制药行业、医保行业,医学相关领域对数据分析的技能需求、人才需求都在高速发展中,但国内的各个医学相关领域在师资队伍、课程建设、技术条件上都面临着结构性的瓶颈。本书的两位作者是国内少数的复合型专家,具备扎实的数理基础和丰富的医学研究经验,本书融合了两位专家的实践经验、教学经验和研究经验,总结了Python在医学数据分析领域的应用,对未来的研究型医师的培养、研究型医院的建设,都是实用而宝贵的知识素材。
—— 范向伟,和鲸科技CEO

目录

第 1 章 Python 语言基础 1
1.1 关于 Python 1
1.2 为什么使用 Python 分析数据 1
1.3 重要的 Python 库 2
1.4 安装与设置 2
1.4.1 在 Windows 或 MacOS 系统上安装 Anaconda 3
1.4.2 在Linux 系统上安装 Anaconda 3
1.4.3 安装和更新包 3
1.4.4 Python 解释器 4
1.4.5 导入库 4
1.5 代码编写工具 5
1.6 开始使用 Python 7
1.6.1 获取帮助 7
1.6.2 把 Python 当作一个计算器 9
1.6.3 Python 对象 12
1.7 工作目录 14
1.8 习题 15

第 2 章 基本数据结构 16
2.1 列表 16
2.1.1 列表的创建 16
2.1.2 列表基本操作 17
2.1.3 列表方法与函数操作 19
2.2 元组 21
2.2.1 元组的创建 21
2.2.2 元组的操作 22
2.3 字典 23
2.3.1 字典的创建 24
2.3.2 字典的操作 25
2.4 集合 26
2.4.1 集合的创建 26
2.4.2 集合的操作 26
2.5 习题 27

第 3 章 控制流、函数与文件操作 28
3.1 条件语句 28
3.1.1 简单条件结构 28
3.1.2 嵌套条件结构 29
3.2 循环语句 30
3.2.1 for 循环 30
3.2.2 while 循环 30
3.3 函数 31
3.3.1 定义函数 31
3.3.2 默认参数 31
3.3.3 任意参数 32
3.3.4 匿名函数 33
3.4 文件操作 33
3.4.1 读取 txt 文件 33
3.4.2 写入 txt 文件 34
3.4.3 读写 CSV 文件 35
3.5 习题 36

第 4 章 NumPy 基础 37
4.1 创建数组对象 37
4.1.1 使用函数 array 创建数组对象 37
4.1.2 使用专门函数创建数组对象 38
4.1.3 生成伪随机数 39
4.2 数组操作 41
4.2.1 数组重塑 41
4.2.2 数组转置和轴变换 41
4.2.3 数组的索引和切片 42
4.3 数组运算 44
4.3.1 通用函数 44
4.3.2 基本统计运算 46
4.3.3 矩阵运算 47
4.4 数组文件的保存与导入 48
4.5 习题 49

第 5 章 Pandas 入门 50
5.1 Pandas 数据结构 50
5.1.1 Series 50
5.1.2 DataFrame 51
5.2 Pandas 对象基本操作 53
5.2.1 索引操作 53
5.2.2 DataFrame 的查询与子集选择 55
5.3 DataFrame 的导入和导出 62
5.3.1 读写文本文件 63
5.3.2 读写其他格式的文件 64
5.4 Pandas 数据预处理 66
5.4.1 数据的合并 66
5.4.2 数据长宽格式的转换 68
5.4.3 缺失值的识别与处理 70
5.4.4 数据值的转换 75
5.5 习题 85

第 6 章 数据可视化 86
6.1 Matplotlib 绘图基础 86
6.1.1 函数 plot 与图形元素 86
6.1.2 全局参数查看与设置 88
6.1.3 一页多图 89
6.1.4 保存图形 90
6.1.5 基本统计图形 91
6.2 Seaborn 数据可视化 96
6.2.1 Seaborn 简介 96
6.2.2 直方图和密度曲线图 97
6.2.3 条形图 98
6.2.4 箱线图和小提琴图 99
6.2.5 点图 102
6.2.6 带状点图与簇状点图 102
6.2.7 散点图 104
6.2.8 散点图矩阵 104
6.2.9 多面板图 105
6.2.10 回归图 107
6.2.11 分面网格图 107
6.2.12 Seaborn 图形保存 108
6.3 其他 Python 数据可视化工具 108
6.4 习题 109

第 7 章 基本统计分析 110
7.1 查看数据集信息 110
7.2 数值型变量的统计描述 113
7.3 数值型变量的假设检验 117
7.3.1 单个样本的 t 检验 117
7.3.2 独立样本的 t 检验 117
7.3.3 非独立样本的 t 检验 118
7.3.4 单因素方差分析 119
7.3.5 组间差异的非参数检验 121
7.3.6 连续型变量之间的相关性 121
7.4 分类变量的列联表和独立性检验 124
7.4.1 生成频数表 124
7.4.2 独立性检验 126
7.5 习题 128

第 8 章 线性模型与广义线性模型 129
8.1 线性模型 129
8.1.1 简单线性回归模型 129
8.1.2 多重线性回归模型 134
8.2 Logistic 回归 137
8.2.1 Logistic 回归模型 137
8.2.2 Logistic 回归实例 138
8.3 Poisson 回归 143
8.3.1 Poisson 回归模型 143
8.3.2 Poisson 回归实例 143
8.4 生存分析与 Cox 回归 145
8.4.1 生存分析简介 145
8.4.2 生存率的 Kaplan-Meier 估计 147
8.4.3 Cox 回归 150
8.5 习题 153

第 9 章 Scikit-learn 机器学习入门 154
9.1 机器学习简介 154
9.2 加载数据集 154
9.3 学习和预测 158
9.3.1 无监督学习 158
9.3.2 监督学习 159
9.4 模型的选择与评估 161
9.5 习题 163

第 10 章 TensorFlow 深度学习入门 164
10.1 深度学习简介 164
10.2 感知机与神经网络 165
10.3 激活函数 167
10.4 损失函数 168
10.5 优化器 168
10.6 构建并训练神经网络 169
10.7 习题 171

第 11 章 图像分类卷积神经网络模型 172
11.1 卷积神经网络 172
11.1.1 局部感受野 172
11.1.2 共享权重和偏置 173
11.1.3 池化 173
11.2 加载数据集 174
11.3 构建卷积神经网络模型 175
11.4 编译并训练模型 177
11.5 评估模型 178
11.6 习题 179

习题参考答案 180
参考资料 192