《大数据分析基础》[72M]百度网盘|pdf下载|亲测有效
《大数据分析基础》[72M]百度网盘|pdf下载|亲测有效

大数据分析基础 pdf下载

出版社 湖北博道图书专营店
出版年 2018-01
页数 390页
装帧 精装
评分 8.5(豆瓣)
8.99¥ 10.99¥

内容简介

本篇主要提供大数据分析基础电子书的pdf版本下载,本电子书下载方式为百度网盘方式,点击以上按钮下单完成后即会通过邮件和网页的方式发货,有问题请联系邮箱ebook666@outlook.com

基本信息

  • 商品名称:大数据分析基础(概念技术方法和商务)(英文版)
  • 作者:编者:李刚民
  • 定价:219
  • 出版社:科学
  • 书号:9787030581488

其他参考信息(以实物为准)

  • 出版时间:2018-01-01
  • 印刷时间:2018-01-01
  • 版次:1
  • 印次:1
  • 开本:16开
  • 包装:平装
  • 页数:632

内容提要

目录

Part One Basics and Concepts
Chapter 1 Introduction
1.1 What Is Big Data Analytics?
1.1.1 Big Data Analytics Requires Data-Driven Business Culture
1.1.2 Big Data Analytics Requires High-Performance Analyses
1.2 Why Big Data Analytics?
1.2.1 History and Evolution of Big Data Analytics
1.2.2 The Drivers of Big Data Analytics
1.2.3 Why Is Big Data Analytics Important?
1.2.4 The Challenges of Big Data Analytics
1.2.5 How Big Data Analytics Is Used Today?
1.3 Big Data Analytics Applications
1.3.1 Industries Where Big Data Analytics Are Successful
1.3.2 Four Powerful Big Data Analytics Application Examples
1.4 The Big Data Analytics Market
1.5 Big Data Analytics Future Trends
1.5.1 Predictive Analytics Will Dominate
1.5.2 Refocusing on the Human Decision-Making
1.5.3 Market Segmentation in Data Analysis Platforms
1.5.4 Open Source Software Tools
1.5.5 Plug-in AI Technologies
1.6 The Contents of Big Data Analytics
1.7 References
1.8 Review Questions and Exercises
Chapter 2 Data and Big Data
2.1 Data as a Basic Entity in the DIKW Framework
2.1.1 DIKW Framework
2.1.2 Data Object, Data Attribute and Data Set
2.1.3 Data Attribute Types
2.2 Big Data
2.2.1 Big Data Definition
2.2.2 Big Data Types
2.3 Quality of Data and Big Data
2.3.1 Definition of Data Quality
2.3.2 Data Measurement and Data Collection
2.3.3 Errors in Measurement and Collection
2.3.4 Data Accuracy
2.4 Basic Measurement of Dataset
2.5 Summary
2.6 References
2.7 Review Questions
Chapter 3 Big Data Analytics Process
3.1 The Process of Data Mining and Knowledge Discovery
3.1.1 CRISP-DM Framework
3.1.2 KDD Process
3.2 Process of Big Data Analytics
3.2.1 Acquisition
3.2.2 Understanding
3.2.3 Preprocess
3.2.4 Analysis